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Abstract— An adaptive autoregressive moving average
(ARMA) modelling of nonstationary EEG by means of
Kalman smoother is presented. The main advantage of the
Kalman smoother approach compared to other adaptive al-
gorithms such as LMS or RLS is that the tracking lag can
be avoided. This advantage is clearly presented with simula-
tions. Kalman smoother is also applied to tracking of alpha
band characteristics of real EEG during an eyes open/closed
test. The observed tracking ability of Kalman smoother,
compared to other methods considered, seemed to be bet-
ter.
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I. Introduction

Electroencephalogram (EEG) analysis is a useful tool for
studying the functional states of the brain and for diagnos-
ing certain neurophysiological states and disorders. In the
analysis of nonstationary EEG the interest is often to es-
timate the time-varying spectral properties of the signal.
A traditional approach to this is the spectrogram method,
which is based on Fourier transformation. Disadvantages
of this method are the implicit assumption of stationarity
within each segment and the rather poor time/frequency
resolution. A better approach is to use parametric spectral
analysis methods based on e.g. time-varying autoregressive
moving average (ARMA) modelling. The time-varying pa-
rameter estimation problem can be solved with adaptive
algorithms such as least mean square (LMS) or recursive
least squares (RLS). These algorithms can be derived from
the Kalman filter equations [1], [2].

In this paper we use the Kalman smoother algorithm
in tracking of nonstationary properties of EEG. Kalman
smoother is compared to LMS and RLS algorithms in
tracking of alpha band characteristics of EEG measured
during an eyes open/closed test. The Kalman smoother
approach is also applied to the detection of alpha waves
of EEG. The main advantage of the Kalman smoother al-
gorithm compared to other adaptive algorithms is the fact
that the tracking lag can be avoided. This is demonstrated
with simulations. Kalman filter has been previously used
in EEG analysis in e.g. [3], [4], [5].

II. Methods

If the signal to be modelled is nonstationary it cannot
be modelled as an output of a time-invariant system. It is
natural in this case to assume that the system has time-
varying parameters.

A. Time-varying linear regression

Here we use a time-varying autoregressive moving aver-
age model for the signal. The time-varying ARMA(p,q)
model can be written in the form

z(t) = −
p∑

j=1

aj(t)z(t− j) +

q∑

k=1

bk(t)e(t− k) + e(t) (1)

where aj(t) and bk(t) are the time-varying ARMA parame-
ters and e(t) is the driving white noise process. By denoting

θt = (−a1(t), . . . ,−ap(t), b1(t), . . . , bq(t))T (2)

ϕt = (z(t− 1), . . . , z(t− p), e(t− 1), . . . , e(t− q))T (3)

the model can be written in the form

zt = ϕTt θt + et (4)

where zt = z(t) and et = e(t). This is clearly a linear
observation model, with ϕTt being the observation matrix
and et being the observation error. A typical description
for the parameter variation when no a priori information
is available, is the random walk model [6]. Thus for the
parameters θt we write a state equation of the form

θt+1 = θt + wt (5)

where wt is a noise process. Equations (4) and (5) form
a specific form of the general state space equations, with
the input process wt. Now the problem is to estimate the
time-varying parameters θt, according to the state space
model.

B. Kalman filter

The Kalman filtering problem is to find the minimum
mean square estimator θ̂t for state θt given the observa-
tions z1, . . . , zt. This has been shown to be equal to the
conditional expectation value

θ̂t = E {θt|z1, . . . , zt} (6)

We assume here the state and measurement noises wt and
et to be uncorrelated, zero mean, random processes with
covariance matrices Cwt = σ2

wI and Cet = σ2
eI, so that

the individual parameter evolutions are assumed to be in-
dependent. The initial state θ0 is assumed to be uncor-
related with et and wt with finite variance. The Kalman
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filter equations can be written in the form

θ̂t|t−1 = θ̂t−1 (7)

Cθ̃t|t−1
= Cθ̃t−1

+ Cwt−1
(8)

Kt = Cθ̃t|t−1
ϕt

(
ϕTt Cθ̃t|t−1

ϕt + Cet

)−1

(9)

Cθ̃t =
(
I −Ktϕ

T
t

)
Cθ̃t|t−1

(10)

εt = zt − ϕTt θ̂t|t−1 (11)

θ̂t = θ̂t|t−1 +Ktεt (12)

where θ̂t|t−1 is the mean square estimator for state θt given

the observations z1, . . . , zt−1, θ̃t is the state estimation er-

ror θ̃t = θt − θ̂t and Kt is the Kalman gain matrix. The
adaptation of the filter is primarily affected by Cwt . Note
that the unknown process et is here estimated with the
prediction error process εt in every step of the iteration.

C. Fixed-interval smoother

The fixed-interval smoothing problem is to determine es-
timates

θ̂t|T = E {θt|z1, . . . , zT } (13)

for fixed T and for all t in the interval 1 ≤ t ≤ T . The
solution for this can be written in the form [7]

θ̂t−1|T = θ̂t−1 +At−1

(
θ̂t|T − θ̂t|t−1

)
(14)

At−1 = Cθ̃t−1
C−1

θ̃t|t−1
(15)

where At−1 includes the error covariances stored in the for-

ward run of Kalman filter. Also the state estimates θ̂t and
θ̂t|t−1 need to be stored. The smoothed estimates θ̂t−1|T are
then obtained by running the stored estimates backwards
in time by taking t = T, T − 1, . . . , 2. The initialization is
evidently with the filtered estimate.

D. Spectral estimation

Once the time-varying coefficients of the ARMA(p,q)
model (1) are solved the time-varying power spectral den-
sity (PSD) estimation can be obtained in the terms of the
estimated coefficients

Pt(ω) = σ2
e(t)
|1 +

∑q
k=1 bk(t)e

−iωk|2
|1 +

∑p
j=1 aj(t)e

−iωj |2 (16)

where σ2
e(t) is the prediction error variance. After the

adaptive algorithm, used to estimate the time-varying
ARMA parameters, converges power spectrum can be cal-
culated for each time instant. However in real applications
it is not usually necessary to calculate PSD estimate for
each time instant, but rather only once for a certain time
interval. The average spectrum within certain interval can
be calculated from averaged ARMA parameters of that in-
terval.
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Fig. 1. AR(2) process estimation with RLS and Kalman smoother
algorithms. The root evolution and the realization are presented
in block (a). Both algorithms were optimized (b). Optimal value
for the state noise covariance coefficient of the Kalman smoother
was σ2

w = 0.001 and the forgetting factor of RLS was λ = 0.935.
The estimates of the modulus and phase angle of the root are
shown in block (c). The true values (black), Kalman smoother
estimates (red) and optimal RLS estimates (blue). The smoother
RLS estimates (green) were calculated by using λ = 0.98.

III. Results

In order to evaluate the performance of the Kalman
smoother algorithm we conduct two simulations, where
Kalman smoother is compared to the popular forgetting
factor RLS algorithm. Finally the Kalman smoother is ap-
plied to time-varying spectrum estimation of real EEG and
for alpha wave detection.

A. Simulations

In the first simulation a time-varying signal was gener-
ated as an AR(2) process. The root evolution and a typ-
ical realization are presented in Fig. 1 (a). The modulus
and phase angle of the root were estimated with Kalman
smoother and RLS algorithms. Parameters controlling the
adaptation were optimized in both algorithms to obtain the
minimum error in AR coefficient estimation. The estima-
tion errors as a function of adaptation parameters for both
algorithms are presented in Fig. 1 (b). The estimates are
shown in Fig. 1 (c).

Two RLS estimates were calculated to demonstrate the
effect of the forgetting factor on the estimates. RLS esti-
mates with the optimal value for the forgetting factor have
only a small tracking lag but the estimates are far more
unstable compared to the Kalman smoother estimates. By
increasing λ RLS estimates become more stable but the
tracking lag increases at the same time. This simulation
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Fig. 2. A realistic simulation of EEG transition as an AR(5) pro-
cess. (a) The roots and the corresponding spectra before (blue)
and after (red) the transition. (b) A typical realization of the
process. Averaged estimates over 100 realizations of the modu-
lus and phase angle of the root corresponding to alpha activity
are presented in (c), where true values (black), Kalman smoother
estimates (red) and RLS estimates (blue/green) are shown. The
state noise covariance coefficient of the Kalman smoother was
σ2
w = 8 · 10−5 and the forgetting factors of RLS were λ1 = 0.98

(blue) and λ2 = 0.9 (green).

shows clearly the advantages of the Kalman smoother com-
pared to the RLS algorithm. However not much can be said
about the performance of the Kalman smoother in track-
ing of nonstationary EEG based on this simple simulation.
Hence we aim to a more realistic simulation of EEG.

In many cases we are interested in tracking of nar-
row band characteristics of the EEG signal. One such
case is the event related desynchronization/synchronization
(ERD/ERS) of alpha waves. The occipital EEG recorded
while patient having eyes closed shows high intensity in
the alpha band (7-13 Hz). With the opening of the eyes
this intensity decreases or even vanishes. It can be as-
sumed that EEG exhibits a transition from a stationary
state to another. Such a transition was here simulated
as an AR(5) process. The roots of the system for both
stationary states (obtained from real EEG measurements)
and the corresponding power spectrums are presented in
Fig. 2 (a), where the strong peak around 0.38π is due to
the synchronization of the alpha waves of EEG.

In order to make the simulation more realistic abrupt
transitions of AR coefficients were smoothed as described

Fig. 3. Time-varying spectral analysis of ERD/ERS test of alpha
waves of EEG. The measured EEG from channel O2 is shown
on the topmost axis. The time window used in the spectrogram
was 2 seconds. The step size of LMS algorithm was µ = 0.0002
while the forgetting factor of RLS was λ = 0.95. The state noise
covariance coefficient of the Kalman filter was σ2

w = 0.0003.

in [8]. A typical realization of the simulated AR(5) process
is presented in Fig. 2 (b). Results of tracking the alpha
band characteristics are presented in Fig. 2 (c), where av-
eraged estimates over 100 realizations of the phase angle
and the magnitude of the root corresponding to alpha ac-
tivity are presented. In order to obtain as smooth estimates
with RLS as is obtained with Kalman smoother the forget-
ting factor λ must be quite small. However this leads to
substantial tracking lag. With larger values of λ the track-
ing lag can be attenuated, but estimates become now more
unstable.

B. ERD/ERS of alpha waves of EEG

The eyes open/closed test is a typical application of test-
ing the desynchronization/synchronization of alpha waves
of EEG. One such transition from desynchronized state to
synchronized state is presented in Fig. 3. The performance
of the Kalman smoother in tracking of alpha band charac-
teristics is compared to other commonly used adaptive al-
gorithms such as RLS and LMS and also to the traditional
spectrogram method. An ARMA(6,2) model was used in
all adaptive algorithms. The length of the time-window
used in spectrogram was 2 seconds, which is long enough
when considering the frequencies of the alpha band (7–13
Hz). The step size of the LMS algorithm was µ = 0.0002
and the forgetting factor of RLS was chosen to be λ = 0.95
resulting in quite stable estimates and still rather fast adap-
tivity. The state noise covariance coefficient of the Kalman
smoother was σ2

w = 0.0003. The tracking speed of the
Kalman smoother seems to be fastest and an interesting
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Fig. 4. Kalman smoother applied to alpha rhythm detection. (a)
An EEG sample of 15 seconds from channel O2 measured from
subject having eyes closed and the corresponding time-varying
PSD. (b) Detection is based on thresholding the power integral
over the alpha band (7–13 Hz) with a threshold of 10 µV2/Hz.
Block (c) presents PSD estimates (calculated with traditional
FFT based method) for the signals obtained by concatenating
the EEG epochs where alpha activity was detected (red) or not
detected (blue).

gap in alpha rhythm is observed after 9 seconds. The con-
tents of this kind of gaps is considered in Fig. 4.

C. Detection of alpha rhythm of EEG

The aim of automatic EEG analysis is often the detec-
tion of certain waveforms. Hence the performance of the
Kalman smoother on detection of alpha waves of EEG is
considered here. Fig. 4 (a) presents a time-varying spec-
trum for an EEG sample of 15 seconds measured from
healthy subject having eyes closed. Alpha wave detection
was obtained by thresholding the power integral over the al-
pha band (7–13 Hz). The threshold was set to 10 µV2/Hz.
The power integral curve was filtered with a median filter
of third order to obtain smoother detection. The perfor-
mance of the alpha detector was verified by concatenating
the EEG epochs where alpha waves were detected and those
were no detection was made. The PSD estimates, calcu-
lated with a traditional FFT based periodogram method,
for these concatenated signals are presented in Fig. 4 (c)
verifying the absence of alpha rhythm in the lower concate-
nated signal.

IV. Discussion

The Kalman smoother algorithm was applied to track-
ing of nonstationary EEG. The performance of Kalman
smoother in tracking of alpha band characteristics seemed
to be most reliable compared to LMS and RLS algorithms.
Kalman smoother was also applied to the detection of alpha
waves of EEG with success. Also two simulations were con-
ducted showing clearly the main advantages (smooth esti-
mates without tracking lag) of Kalman smoother compared
to other adaptive algorithms. The implementation and us-
ability of the Kalman smoother approach are straightfor-
ward. The adaptation rate is adjusted simply by setting
the state covariance coefficient σ2

w.
One problem in modelling the data with adaptive al-

gorithms is the selection of the model order. For time-
invariant systems there exist various criteria for selecting
the model order [9]. All these criteria are based on the com-
promise between model fit and model complexity. Also in
the time-varying case there exist some criteria for selecting
the model order. For example in [10] the use of Akaike’s in-
formation criterion (AIC) was justified in the time-varying
case under certain conditions. However in the case of track-
ing alpha rhythm of EEG the ARMA model of order p = 6
and q = 2 seems to be suitable. The same model order was
also used in [11], [12].
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